Beyond the passive interactions at the nano-bio interface: evidence of Cu metalloprotein-driven oxidative dissolution of silver nanoparticles

نویسندگان

  • Daniel N. Freitas
  • Andrew J. Martinolich
  • Zoe N. Amaris
  • Korin E. Wheeler
چکیده

BACKGROUND In a biological system, an engineered nanomaterial (ENM) surface is altered by adsorbed proteins that modify ENM fate and toxicity. Thus far, protein corona characterizations have focused on protein adsorption, interaction strength, and downstream impacts on cell interactions. Given previous reports of Ag ENM disruption of Cu trafficking, this study focuses on Ag ENM interactions with a model Cu metalloprotein, Cu(II) azurin. The study provides evidence of otherwise overlooked ENM-protein chemical reactivity within the corona: redox activity. RESULTS Citrate-coated Ag ENMs of various sizes (10-40 nm) reacted with Cu(II) azurin resulted in an order of magnitude more dissolved ionic silver (Ag(I)(aq)) than samples of Ag ENMs only, ENMs mixed Cu(II) ions, or control proteins such as cytochrome c and horse radish peroxidase. This dramatic increase in ENM oxidative dissolution was observed even when Cu(II) azurin was combined with a diverse mixture of Escherchia coli proteins to mimic the complexity of the cellular conona. SDS PAGE results confirm that the multiprotein ENM corona includes azurin. A Cu(I)(aq) colorimetric indicator confirms Cu(II) azurin reduction upon interaction with Ag ENMs, but not with the addition of ionic silver, Ag(I)(aq). CONCLUSIONS Cu(II) azurin and 10-40 nm Ag ENMs react to catalyze Ag ENM oxidative dissolution and reduction of the model Cu metalloprotein. Results push the current evaluation of protein-ENM characterization beyond passive binding interactions and enable the proposal of a mechanism for reactivity between a model Cu metalloprotein and Ag ENMs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The fate of nano-silver in aqueous media.

Silver nanoparticles offer highly attractive properties for many applications, however concern has been raised over the possible toxicity of this material in environmental systems. While it is thought that the release of Ag(+) can play a crucial role in this toxicity, the mechanism by which the oxidative dissolution of nano-silver occurs is not yet understood. Here we address this through the e...

متن کامل

Bio-fabrication of silver nanoparticles using Rosa Chinensis L.extract for antibacterial activities

The purpose of this study was to expand a trouble free biological method for the synthesis of silver nanoparticles (AgNPs) using the leaves extract of Rosa ChinensisL. to act as reducing and stabilizing agent. Water soluble phytochemicals played a vital role for the reduction silver ions into silver nanoparticles. The leaves extract was exposed to silver ions and the resultant biosynthesized Ag...

متن کامل

Bio-fabrication of silver nanoparticles using Rosa Chinensis L.extract for antibacterial activities

The purpose of this study was to expand a trouble free biological method for the synthesis of silver nanoparticles (AgNPs) using the leaves extract of Rosa ChinensisL. to act as reducing and stabilizing agent. Water soluble phytochemicals played a vital role for the reduction silver ions into silver nanoparticles. The leaves extract was exposed to silver ions and the resultant biosynthesized Ag...

متن کامل

Low temperature formation Silver-Copper alloy nanoparticles using hydrogen plasma treatment for fabrication of humidity sensor

In this paper, a novel method of producing bi-metallic alloy nanoparticles at low temperatures using hydrogen bombardment of thin films, deposited on glass substrates, is introduced. Optical and morphological characteristics of the nanoparticles were extensively studied for various conditions of plasma treatment, such as plasma power density, temperature, duration of hydrogen bombardment, thick...

متن کامل

Low temperature formation Silver-Copper alloy nanoparticles using hydrogen plasma treatment for fabrication of humidity sensor

In this paper, a novel method of producing bi-metallic alloy nanoparticles at low temperatures using hydrogen bombardment of thin films, deposited on glass substrates, is introduced. Optical and morphological characteristics of the nanoparticles were extensively studied for various conditions of plasma treatment, such as plasma power density, temperature, duration of hydrogen bombardment, thick...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2016